
25th Internationalization & Unicode Conference 1 Washington, DC, April 2004

The Common Locale Repository - Update

Dr. Mark Davis
mark.davis@us.ibm.com

Steven R. Loomis
srloomis@us.ibm.com

Copyright © 2004 IBM Corporation

1. Introduction
Unicode has provided a foundation for communicating textual data. However, the locale-
dependant data used to drive features such as collation and date/time formatting may be
incorrect or inconsistent between systems. This may not only present an irritating user
experience, but prevent accurate data transfer.
The Common XML Locale Repository is a step towards solving these problems, by
providing an interchange format for locale data and developing a repository of such data
available.
In this document, a “Locale” is an identifier that refers to a set of linguistic and cultural
preferences. Traditionally, the data associated with such a locale provides support for
formatting and parsing of dates, times, numbers, and currencies; for the default units of
currency; for measurement units, for collation (sorting), plus translated names for time
zones, languages, countries, and scripts. They can also include text boundaries (character,
word, line, and sentence), text transformations (including transliterations), and support
for other services. Because locale data changes over time, the data must be versioned to
provide stability.
Examples of platforms with their own locale data are ICU1, OpenOffice.org, and POSIX
and POSIX-like operating systems such as Linux, Solaris, and AIX.

2. Common XML Locale Repository Group
OpenI18N2, formerly known as "Li18nux", is a workgroup of the Free Standards Group3.
It is a volunteer organization, which develops free and open standards for
internationalization. The Linux Application Development Environment, or LADE,

1 ICU — International Components for Unicode: http://oss.software.ibm.com/icu/
2 Openi18n - http://www.openi18n.org
3 Free Standards Group site: http://www.freestandards.org

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 2 Washington, DC, April 2004

subgroup is responsible for issues regarding API support or base level application
environment requirements. The Common XML Locale Repository project, in turn, is
sponsored by the LADE subgroup.

3. Objectives
The goals of this project are to:

a) Produce a common format for the encoding and interchange of locale data, as
an XML locale markup language specification.

b) Collect locale data from a variety of platforms.
c) Make a repository of such data available for download by the public.
d) Implement a process whereby data is determined to be valid, and labeled in

the repository as such.
e) Provide enablement for Web Services4 as defined by the W3C Web Services

task force. Allow web services to have consistent locale information
regardless of underlying platform, operating system, or software version.
Provide a way to access locale data that a client-specified platform would
expect (for example, a server requesting Windows data for a locale).

4. The Locale Repository
Locale data collected from various sources is available via the repository. Currently, the
Repository exists as a source code control database. Data will be accessible via HTTP as
well, to enable automated tools for importing portions of the repository into different
environments.
The repository distinguishes among data gathered from different platforms, for example,
ICU, openOffice.org, and Solaris.
The repository is designed to allow access to the locale data for use in application
environments, for example to create a set of POSIX locales based on data in the
repository, and also to enable comparisons of data between platforms.
Tools exist which can compare between multiple platforms in the repository, and
comparison charts have been produced based on that data. A process will be defined
whereby submitted data is given to experts for vetting, and then marked as such in the
repository. This vetting process, and the comparison charts, are described in detail in
Appendices A and D, respectively.
Actual discrepancies found when comparing the data have only reinforced the need for
such a common repository. Some of these differences seem to be errors, while others may
indicate regional differences, or even personal preferences of the people
verifying/collecting the data. The use and spelling of abbreviations vary somewhat from
platform to platform, as do punctuation and case.

4 W3C Web Services Scenarios: http://www.w3.org/TR/ws-i18n-scenarios/

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 3 Washington, DC, April 2004

The common repository of vetted, verified data is intended to be used by platforms as
their single source for data. When this is accomplished, the goal of platform consistency
can be realized.
The Common Locale Data Repository - Version 1.0 has been approved for release by the
OpenI18n steering committee as of January 16, 2004.

5. Locale Data Markup Language
Locale Data Markup Language5 is the XML format for specifying locale data in the
repository. Version 1.0 of this specification was released June 24th, 2003. This paper
refers to version 1.0, plus the latest errata available from the same website.
Each locale’s data is stored in a separate XML file, for example fr_BE.xml or en.xml,
and the top level element is named <ldml>.

5.1. Locales and the <identity> Element
Locales consist of four parts: the language, the territory, the variant, and finally any
locale options. Only the language code is required.
Here are some example locales:
Locale Description
en English
fr_BE French in Belgium
de_DE German in Germany
sv_FI_AL Swedish in Finland, Åland region.
de_DE@collation=phonebook,currency=CHF German in Germany, with Collation

according to phonebook order, and
Swiss Franc currency.

Language and Territory6 codes follow ISO-6397 and ISO-31668, respectively. Two-letter
codes are used where they exist, otherwise three-letter codes are used. (See also the
OpenI18N convention on locale naming9, and RFC 306610 standards for language
tagging.)
The variant codes specify particular variants of the locale, typically with special options.
For example, the variant “AL” specifies Åland, an autonomous region of Finland.
Options are key-value pairs which request alternate forms of the locale. The currently
defined types are collation, currency, and calendar.
Below is an example <identity> element, which identifies the locale data as being part
of the sv_FI_AL locale (that is, sv_FI_AL.xml).

5 Locale Data Markup Language: http://oss.software.ibm.com/icu/locale/
6 The territory code is sometimes referred to as the “country code”, although not all territories covered by
ISO-3166 are actually countries.
7 ISO-639: http://www.chemie.fu-berlin.de/diverse/doc/ISO_639.html
8 ISO-3166: http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
9 OpenI18N Locale Naming Guide: http://www.openi18n.org/localenameguide/
10 RFC-3066: http://www.ietf.org/rfc/rfc3066.txt

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 4 Washington, DC, April 2004

<ldml>
 <identity>
 <version number=”1.1”>Various notes and changes</version>
 <generation date=”2002-08-28”/>
 <language type=”sv”/>
 <territory type=”FI”/>
 <variant type=”AL”/>
 </identity>
</ldml>

5.2. Inheritance
Besides taking up space in the Repository, redundant data adds needlessly to the
maintenance burden. The Locale Data Markup Language relies on an inheritance model,
whereby the resources are collected into bundles, and the bundles organized into a tree.
Data for the many Spanish locales does not need to be duplicated across all of the
countries having Spanish as a national language. Instead, common data is collected in the
Spanish language locale, and territory locales only need to supply differences.
The parent of all of the language locales is a generic locale known as root. Wherever
possible, the resources in the root are language and territory neutral.
Given a particular locale id "en_US_someVariant", the search chain for a particular
resource is the following:

en_US_someVariant en_US en root

In some cases, the searching is done within a resource. For example, with calendars
(discussed below), all non-Gregorian calendars inherit their data from the Gregorian
class.
Where this inheritance relationship is not supported by a target system, such as with
POSIX, the data logically should be fully resolved in converting to a format for use by
that system, by adding all inherited data to each locale data set.
In addition, the locale data does not contain general character properties that are derived
from the Unicode Character Database data (UCD11). That data being common across
locales, it is not duplicated in the repository. Constructing a POSIX locale from the
following data requires use of that data. In addition, POSIX locales may also specify the
character encoding, which requires the data to be transformed into that target encoding.

5.3. Aliasing
The contents of any element can be replaced by an alias, which points to another source
for the data. The resource is to be fetched from the corresponding location in the other
source.
The following example demonstrates a locale “zh_HK” which has a collation element
aliased to “zh_TW”. Both locales use Traditional Chinese collation, which has a
considerable disk footprint.

11 UCD: ftp://ftp.unicode.org/Public/UNIDATA/UnicodeCharacterDatabase.html

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 5 Washington, DC, April 2004

<ldml>
 <identity>
 <language type=“zh”/><territory type=“HK”/>

 </identity>
 <collations>
 <alias source=“zh_TW”/>
 </collation>
</ldml>

5.4. type Attribute
Any element may have a type specifier, to indicate an alternate resource that can be
selected with a matching type=option in the locale id modifiers, or be referenced by a
default element of the form <default type=“xxx”>. The following example
demonstrates multiple elements of different types used to select differing number
formats.

<numberFormats>
 <default type=“scientific”/>
 <numberFormatStyle type=“decimal”>...</numberFormatStyle>
 <numberFormatStyle type=“percent”>...</numberFormatStyle>
 <numberFormatStyle type=“scientific”>...</numberFormatStyle>
</numberFormats>

The currently defined optional key/type combinations include:
key type Description

phonebook For a phonebook-style ordering (used in German).
pinyin Pinyin order for CJK characters
traditional For a traditional-style sort (as in Spanish)
stroke Stroke order for CJK characters
direct Hindi variant

collation

posix A "C"-based locale.
gregorian (default)
islamic Astronomical Islamic
chinese Traditional Chinese calendar
islamic-civil Civil (algorithmic) Islamic calendar
hebrew Traditional Hebrew Calendar
japanese Imperial Calendar (same as Gregorian except for the

year, with one era for each Emperor)

calendar

buddhist Buddhist Calendar (same as Gregorian except for the
year)

5.5. draft and standard Attributes
Any element may be marked with draft=”true” to indicate data that has not yet been
verified. The following example shows an entire locale which is in draft stage:

<ldml draft=”true”> … </ldml>

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 6 Washington, DC, April 2004

Similarly, the standard= attribute denotes any element with data designed to conform to
a particular standard. It may be a single string, or a comma separated list.

<collation standard=”MSA 200:2002”> …

<dateFormatStyle type=”decimal” standard=”ISO 8601,
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNU
MBER=26780&ICS1=1&ICS2=140&ICS3=30,DIN 5008”>

5.6. Data Access
Data in the repository can be accessed via http. Given a base address for the repository, a
URL can be constructed requesting data by version, platform, and locale. For example, if
the base URL is “http://openi18n.org/locale” and the platform is “icu”, a URL
could be constructed such as:
http://openi18n.org/locale/icu/de_DE.xml?version=2.2&collation=phonebook

This URL will request the German (in Germany) locale data, of version 2.2, and it will
request that all <collation> elements returned have a matching type=“phonebook”
attribute.

5.7. Escaping Characters
Extra syntax is required to represent Unicode code points which XML cannot otherwise
represent, such as white space, control characters, and NULL. For example, the NULL
character cannot be represented by an entity such as “�”, which is not legal
XML. In a Locale Data Markup Language XML document, this may be written as
follows:
 <cp hex=”0”>

5.8. <dates> Element
This top-level element contains information regarding the formatting and parsing of dates
and times. <calendars>, <localizedPatternChars> and <timeZoneNames>. See the Locale
Data Markup Language specification for more details on the latter two
5.8.1. <localizedPatternChars> and <timeZoneNames>
This sub-element contains translated replacements for date format pattern characters (e.g.
‘m’ for month, etc.) for display use.
5.8.2. <timeZoneNames>
This sub-element contains translated names of time zones.
5.8.3. <calendars>
This sub-element contains multiple <calendar> elements, each of which specifies the
fields used for formatting and parsing dates and times according to the given calendar.
The month names are identified numerically, starting at 1. The day names are identified
with short strings, since there is no universally accepted numeric designation.
Many calendars differ from the Gregorian calendar only in the year and era values. For
example, the Japanese calendar has many more eras (one for each Emperor), and the

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 7 Washington, DC, April 2004

years are numbered within that era. All other calendars inherit from the Gregorian
calendar (which must be present), so only the differing data will be present. Calendars are
distinguished by the ‘type’ attribute, which identifies which class of calendar it is, such
as Gregorian, Japanese, and so on.
The following example shows a condensed Gregorian calendar definition, and a portion
of the Japanese calendar definition for comparison:
 <dates>
 <calendars>

<calendar type=“gregorian”>
 <monthNames>
 <month type=“1”>January</month>
 <month type=“2”>February</month>
 </monthNames>
 <dayNames>
 <day type=“sun”>Sunday</day>
 <day type=“mon”>Monday</day>
 </dayNames>
 <eras>
 <eraAbbr>
 <era type=“0”>BC</era>
 <era type=“1”>AD</era>
 </eraAbbr>
 </eras>
 <dateFormats>
 <default type=”medium”/>
 <dateFormatLength type=”full”>
 <dateFormat>
 <pattern>EEEE, MMMM d, yyyy</pattern>
 </dateFormat>
 </dateFormatLength>
 <dateFormatLength type=“medium”>
 <default type=”DateFormatsKey2”>
 <dateFormat type=”DateFormatsKey2”>
 <pattern>MMM d, yyyy</pattern>
 <displayName>DIN 5008 (EN 28601)</displayName>
 </dateFormat>
 <dateFormat type=”DateFormatsKey3”>
 <pattern>MMM dd, yyyy</pattern>
 </dateFormat>
 </dateFormatLength>
 </dateFormats>
 <timeFormats>
 …
 <pattern>h:mm:ss</pattern>
 …
 </timeFormats>
</calendar>
<calendar class=“japanese”>
 <eras>
 <eraAbbr>
 <era type=“0”>Showa</era>
 <era type=“1”>Heisei</era>
 …
 </eraAbbr>
 </eras>

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 8 Washington, DC, April 2004

</calendar>
 </calendars>

5.9. <numbers> Element
This element supplies information for formatting and parsing numbers and currencies.
The <symbols> element gives information about the textual representation of individual
components of a formatted number, such as digits, separators, and signs.

<symbols>
 <decimal>.</decimal>
 <group>,</group>
 <list>;</list>
 <percentSign>%</percentSign>
 <nativeZeroDigit>0</nativeZeroDigit>
 <patternDigit>#</patternDigit>
 <plusSign>+</plusSign>
 <minusSign>-</minusSign>
 <exponential>E</exponential>
 <perMille>‰</perMille>
 <infinity>∞</infinity>
 <nan>_</nan>
</symbols>

Patterns for formatting and parsing numbers are contained under the <decimalFormats>,
<scientificFormats>, <percentFormats>, and <currencyFormats> elements. Each
of these elements has a similar structure. For example, <decimalFormats>, contains one
or more <decimalFormatLength> elements. These are distinguished by the type
attribute, which describes a pattern length such as short, medium, or long.

<decimalFormats>
 <default type=”long”>
 <decimalFormatLength type=“long”>
 <decimalFormat>
 <pattern>#,##0.###;-#,##0.###</pattern>
 </decimalFormat>
 </decimalFormatLength>
 <decimalFormatLength type=“short”>
 <decimalFormat>
 <pattern>#,##0;-#,##0</pattern>
 </decimalFormat>
 </decimalFormatLength>
 </decimalFormats>

The semicolon “;” separates positive and negative patterns.
<currencyFormats>
 <currencyFormatLength type=“medium”>
 <currencyFormat>
 <special xmlns:ooo=”http://www.openoffice.org”>
 <ooo:msgid=“FixedFormatstype9”/>
 <ooo:usage=“FIXED_NUMBER” formatindex=“4”/>

</special>
 <pattern> #,##0.00;(#,##0.00)</pattern>
 </currencyFormat>
 </curencyFormatLength>
</currencyFormats>

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 9 Washington, DC, April 2004

In the currency case, the international currency symbol, , is replaced with the national
currency symbol located in the appropriate <currencies> element. Information about
which currency is the default for a given locale is not stored in the locale, but is in a
separate “supplemental” data component.

<currencies>
 <currency type=“USD”>
 <displayName>dollar</displayName>
 <symbol>$</symbol>
 </currency>
 <currency type=“JPY”>
 <displayName>yen</displayName>
 <symbol>¥</symbol>
 </currency>
</currencies>

5.10. <collations> Element
The <collations> element contains one or more <collation> elements, and provides
information about linguistic collation (sorting) of text. The base (root) locale is defined to
have collation behavior according to the Unicode Collation Algorithm (UTS #10)12, and
all other locales have collation rules which are defined in terms of tailorings (deltas)
relative to the UCA.
Below is a partial example taken from the Swedish tailorings, which defines characters
that sort following ‘Y’. Y and ü have a secondary (accent) difference, ü and Ü have a
tertiary (case) difference.

<collations>
 <collation type="standard" >
 <settings caseLevel=“on”/>
 <rules>
 <reset>Y</reset>
 <s>ü</s>
 <t>Ü</t>

 ...
 </rules>
 </collation>
</collations>

5.11. <special xmlns:yyy=”xxx”> Element
The <special> element may occur anywhere, and allows for arbitrary additional
annotation and data that is platform-specific. It has one required attribute, xmlns, which
specifies the unique XML namespace of the special data.
The following example demonstrates the inclusion of transform (transliteration) data,
which is used by ICU, but not part of the Locale Data Markup Language spec. The
DOCTYPE element must be at the top of the locale, and specifies that the “ldmlICU.dtd”
definition must be considered for parsing.

12 UTS #10: Unicode Collation Algorithm http://www.unicode.org/reports/tr10/

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 10 Washington, DC, April 2004

<!DOCTYPE ldml SYSTEM http://www.openi18n.org/spec/ldml/1.0/ldml.dtd” [
 <!ENTITY % icu SYSTEM
“http://www.openi18n.org/spec/ldml/1.0/ldmlICU.dtd”>
 %icu;
]>

 <special xmlns:icu=“http://oss.software.ibm.com/icu/”>
 <icu:transforms>
 <icu:transform type=“Latin”>
 α < a ; Α < A ;
 β < v ; Β < V ;
 </icu:transform>
 </icu:transforms>
 </special>

5.12. Other Elements
For more detail about these elements, please see the Locale Data Markup Language
specification.
<displayName>

a translated name that can be presented to users when discussing the particular service,
for example, in a GUI

<delimiters>
common delimiters for bracketing, such as quotation marks

<characters>
information about the characters commonly used in the locale, and other information
helpful in picking among character encodings

<layout>
specifies general document-layout features

<localeDisplayNames>
translated names for scripts, languages, countries, and variants

<measurement>
specifies the measuring system in use, for example, “metric”

6. Design Decisions
• Rather than use attributes, the markup language often uses elements. For example,

rather than have multiple <numberFormat> elements, all patterns could be
represented with attributes:

<numberFormats decimalFormat=“0.##” percentFormat=“#,##0%”>

Although this appears to be more compact, there are a number of difficulties.
o Inheritance becomes more complex, because not only elements, but individual

attributes must be processed.
o Programmatic processing of the data is difficult, because attribute names must

be special cased whereas multiple elements are easier to enumerate.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 11 Washington, DC, April 2004

o Attribute values are normalized (see XML13), and therefore line breaks and
spaces would be collapsed, changing the meaning of the data.

7. Open Issues
• The possibility of different input (parsing) and output (formatting) symbols has been

discussed, to allow greater flexibility of user input.
o The design process must be opened up for future collaborations. For now, the

website, CVS repository for read access, and newsgroups are available.

13 XML: http://www.w3.org/TR/REC-xml#AVNormalize

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 12 Washington, DC, April 2004

Appendix A: Data Collection and Vetting Process
 (Baldev S. Soor)

1. Data Collection Process
When gathering data for a country and language, it is important to have multiple sources
for that data in order to weed out any bias. Contributions will be invited. A separate
document details the format of the contributions. Contributors can be individuals or
organizations.
The ICU locale data will be taken as the initial source. The goal is to come up with a
reasonable set of data within a short time; the expectation is that it will be modified and
improved, in successive versions, by more input from the open-source community and
experts resident in the countries.
When using existing data, we may have to extrapolate from the available sources because
there may not be a direct match between the XML format required, and that particular
source. Members are encouraged to use local contacts to help with the extrapolation.

2. Data Scrubbing Process
Once data for a country and language has been received, the data from the different
sources will be compared to show agreements and differences. The data differences will
be resolved.

2.1 Resolution Procedure
Data contributed to the group from different sources may be in conflict. For example, a
contribution on abbreviated month names may show each abbreviated name ending with
a period and another contribution for the same abbreviated month names may not show
the trailing period. A resolution process will be used to resolve these conflicts.
Note that there are two types of data in the repository:
a) Contributor specific data: The contributor can be an individual or an organization.

The group will not make any changes to the data. Changes to the data are up to the
contributing party. The only request is that all changed data be versioned, and the
Version Numbering Scheme be used.

b) Common Data: This is decided by the group. Normally this would be by consensus of
the members attending the regular meetings using the following process:
 i. Each organization (company or government) that has contributed a substantially

complete resource tree (substantial amount of locale data for a number of locales)
can designate up to 3 voting members

 ii. All proposals must be in writing on the localerepository mailing list. These
proposals can be amended in a meeting, however.

 iii. When a proposal is introduced for the first time in a meeting, any voting member
can ask for the decision to be delayed to the next meeting, to allow time for study.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 13 Washington, DC, April 2004

 iv. Any proposal can be passed by consensus; if no voting member calls for a vote, the
proposal passes.

 v. If a proposal is called for a vote, the proposal is passed by a simple majority of
voting members.

 vi. When more than two options are proposed, approval voting is used to decide among
the options. With approval voting, each voting member checks off all the options
that are acceptable to them. (Thus more than one option can be selected by each
voting member.) The option with the largest total checks wins. 14

Members are encouraged to use local language and country contacts, inside and outside
their organization, to help vet current common data and any new proposals for addition or
amendment of common data. In particular, national standards organizations are
encouraged to be involved in the data vetting process. All people involved in vetting data
should compare any proposed changes against the data in the comparison charts15 and
indicated which platforms the proposed changes align with, or whether they are different
than all of the platforms.

2.2 Prioritization
In anticipation that there may be conflicting common practices or standards for a given
country and language, we will use keyword variants to reflect the different practices. For
example, for German we will distinguish between PHONEBOOK and DICTIONARY
collation.
When there is an existing national standard for a country, the goal is to follow that
standard as much as possible. Where the common practice in the country deviates from
the national standard, or if there are multiple conflicting common practices, or options in
conforming to the national standard, or conflicting national standards, such differences in
the common data repository will be distinguished by keyword variants or variant locales.
Where a data item is identified as following a particular national standard (or other
reference), the goal is to keep that data aligned with that standard. There is, however, no
guarantee that data will be tagged with any or all of the national standards that it follows.

3. Data Release Process

3.1 Version Numbering Scheme
The locale data is frozen per version. Once a version is released, it is never modified.
Any changes, however minor, will mean a newer version of the locale data being
released. The versioning scheme is x.y.z, where z is incremented for bug fixes, y is
incremented for any significant additions (such as new locale data), and x is incremented
for any change in format (such as the addition of new elements to the spec).
The initial version number will be 1.0.0

14 More on Approval Voting: http://forum.icann.org/election/395ACB7A00000002.html
15 Comparison Charts: http://oss.software.ibm.com/icu/locale/ (also see Appendix D)

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 14 Washington, DC, April 2004

3.2 Release schedule
An early release of a version of the common data will be issued as an ALPHA release.
This will be followed by a BETA release, three months later. The FINAL version will be
released three months after the BETA release.

Appendix B: Data Formats
This section provides basic information about data formats for fields in the Common
Locale Data Repository. It is intended to clarify the meaning of some of the data for
localizers and other people reading the CLDR comparison charts.
The formats are described in the Locale Data Markup Language specification16. Another
resource is the ICU Locale Explorer17, where the results of different formats can be
viewed. Note that some fields are expected to be in English, since they indicate internal
IDs and not translated text, such as the layout orientation, which has the value "top-to-
bottom".

Collation (Sorting Sequence)
The exact collation sequence for a given language may be difficult to determine. The
base ordering of characters can be fairly straightforward, but there are quite a few other
complications involved. For more information, see UTS #10: Unicode Collation
Algorithm18 (UCA).
For readability, the rules are presented here in Java/ICU rule format, rather than XML;
for the same reason, we prefer the bug reports to also use that format, even though the
end result will be in XML. For more information, see ICU Collation Customization.19

Comparison Charts
In the comparison charts, rules are gathered programmatically; gathering the data for the
rules is complicated by a number of factors, including:
 i. Different data sources use a different "base" for tailoring (the Common rules use the

UCA as a base).
 ii. Sometimes special features are handled programmatically, such as having an SHADDA

mark apply to all Unicode characters instead of just Arabic letters.
 iii. Sometimes characters out of the repertoire are simply ignored, thus having a_ < ab,

since _ (z with over-dot) is ignored.
 iv. Sometimes orderings from other platforms will not abide by the UCA well-formedness

criteria, so there may be cases where for characters X and Y:
• X < Y
• XY and YX are not contractions

16 Locale Data Markup Language: http://oss.software.ibm.com/icu/locale/
17 Locale Explorer: http://oss.software.ibm.com/cgi-bin/icu/lx
18 UCA: http://www.unicode.org/reports/tr10/#Introduction
19 Collation Customization: http://oss.software.ibm.com/icu/userguide/Collate_Customization.html

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 15 Washington, DC, April 2004

• but XY = YX.
At the moment there are a number of known problems with the gathering mechanism that
may result in spurious rules. For more information, see the list of known errors and
omissions in the Locale Repository bug database20.

Pitfalls
There are a number of pitfalls with collation, so be careful. In some cases, such as
Hungarian or Japanese, the rules can be fairly complicated (of course, reflecting that the
sorting sequence for those languages is complicated).

1. Only tailor expected data. We focus on the required collation sequence for a
given language with normal data. So we don't include full-width characters for a
European collation sequence, such as

o ... CSCS <<< ____ ...
o ... CSCS <<< \uFF23\uFF33\uFF23\uFF33 ... (equivalently)

2. Tailor trailing contractions. If a sequence of characters is treated as a unit for
collation, it should be entered as a contraction.

& c < ch

One might think that sequence like "dz" doesn't require that, since it would always
come after "d" followed by any other letter; it is a "trailing contraction". But in
unusual cases, that wouldn't be true; if "dz" is a unit sorted as if it were a distinct
letter after "d", one should get the ordering "d_" < "dz". This will only happen if
"dz" is a contraction, such as

& d < dz

1. Watch out for Expansions. If you have a rule like &cs < d, and "cs" has not
occurred in a previous rule as a contraction, then this is automatically considered
to be the same as &c < d / s; that is, the d expands as if it were a "cs" (actually,
primary greater than a "cs", since we wrote "<"). This expansion takes effect until
the next primary difference.

So suppose that "ccs" is to behave as if it were "cscs", and take case differences
into account. You might try to do this with the rules on the left:

Rules (Wrong) Actual Effect

& C < cs <<< Cs <<< CS
& cscs <<< ccs
<<< Cscs <<< Ccs
<<< CSCS <<< CCS

& C < cs <<< Cs <<< CS
& cs <<< ccs / cs
<<< Cscs / cs <<< Ccs / cs
<<< CSCS / cs <<< CCS / cs

20 Known Issues: http://www.openi18n.org/locale-bugs/public?findid=18

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 16 Washington, DC, April 2004

But since the CSCS has not been made a contraction in previous rules, this
produces an automatic expansion, one that continues through the entire sequence
of non-primary differences, as shown on the right. This is not what is wanted:
each item acts like it expands compared to the previous item. So CCS, for
example, will act like it expands to CSCScs!
What you actually want is the following:

Rules (Right) Actual Effect

& C < cs <<< Cs <<<
CS
& cscs <<< ccs
& Cscs <<< Ccs
& CSCS <<< CCS

& C < cs <<< Cs <<< CS
& cs <<< ccs / cs
& Cs <<< Ccs / cs
& CS <<< CCS / CS

In short, when you have expansions, it is always safer and clearer to express them
with separate resets. There are only a few exceptions to this, notably when CJK
characters are interleaved with Hangul Syllables.

2. Don't tailor what you don't have to. Example: Maltese was sorting character
sequences before a base character using the following style:

& B
< (dotted c)
<<< (dotted C)
< c
<<<C

This works, but is sub-optimal for two reasons.
1. it tailors c/C when it doesn't need to be; any extra tailoring

generally makes for longer sort keys.
2. by tailoring c/C, it puts other those things that are after b/B

after c/C instead. See the Unicode Collation Charts21 for
examples.

The correct rules should be:

& [before 1] c < (dotted c) <<< (dotted C)

This finds the highest primary (that's what the 1 is for) character less than c, and
uses that as the reset point. For Maltese, the same technique needs to be used for
dotted-c and dotted-C.

21 Unicode Collation Charts: http://www.unicode.org/charts/collation/

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 17 Washington, DC, April 2004

Exemplar Characters
The exemplar character set contains the commonly used letters for a given modern form
of a language, which can be for testing and for determining the appropriate repertoire of
letters for charset conversion or collation. It is not a complete set of letters used for a
language, nor should it be considered to apply to multiple languages in a particular
country. In general, the test to see whether or not a letter belongs in the set is based on
whether it is acceptable in that language to always use spellings that avoid that character.
For example, the exemplar character set for en (English) is the set [a-z]. This set does not
contain the accented letters that are sometimes seen in words like "résumé" or "naïve",
because it is acceptable in common practice to spell those words without the accents. The
exemplar character set for fr (French), on the other hand, must contain those characters:
[a-z é è ù ç à â ê î ô û æ œ ë ï ÿ].

Punctuation and other symbols should not be included. Sequences of characters that act
like a single letter in the language — especially in collation — are included within
braces, such as [a-z á é í ó ú ö ü _ _ {cs} {dz} {dzs} {gy} ...]. Where combining marks
are used generatively, and apply to a large number of base characters (such as in Indic
scripts), the individual combining marks should be included. Where they are used with
only a few base characters, the specific combinations should be included. Wherever there
is not a precomposed character (e.g. single codepoint) for a given combination, that must
be included within braces. For example, to include sequences from the “Where is my
Character?22” page on the Unicode site, one would write: [{ch} {t_} {x_} {__} {__}
{i__} {__}], but for French one would just write [a-z é è ù ...]. When in doubt use braces,
since it does no harm to included them around single code points: e.g. [a-z {é} {è} {ù}
...].
The exemplar character set for Han characters is composed somewhat differently. It is
even harder to draw a clear line for Han characters, since usage is more like a frequency
curve that slowly trails off to the right in terms of decreasing frequency. So for this case,
the exemplar characters simply contain a set of reasonably frequent characters for the
language, based on presence in character set standards.
This set is case insensitive; this means it does not need both upper and lower case
characters. The ordering of these characters are irrelevant. If the sort order or collation
order is needed, then please refer to the collation section of this guide.

Display Names: Languages, Scripts, Territories, Currencies,
Time Zones
These items are perhaps the simplest to translate. The typical behavior if any particular
one is not available is to display the corresponding ISO code (or RFC 3166 code). Thus if
there is no localization of FR (France), then the string "FR" will appear.

22 Where is my Character? - http://www.unicode.org/standard/where/

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 18 Washington, DC, April 2004

For a list of the kinds of IDs that can be localized, see the English-US locale data23, which
has all territories, languages, scripts and currency names that can be translated.

Because these lists are long, it may be more difficult to collect all the data at once. If that
is the case, we suggest first providing translations of at least the elements that are most
familiar to people with the target language. This might be, for example, the countries,
languages, scripts, and (modern) currencies for:

1. Countries having the target language as an official language
2. G7 + BRIC countries: US, Canada, Japan, UK, France, Germany, Italy;

Brazil, Russia, India, China
3. Countries adjacent to the countries in #1

Languages
The language codes are based on ISO-639. 24 The translations for the names of the other
languages in the current given language should be cased according to how the language
name would appear in the middle of a sentence. If the user of this data is going to use the
name at the beginning of a sentence, the developer (not the translator) will title case the
word. For example, English will translate fr to be "French", but Spanish will translate fr
to be "francés".

Scripts
The script codes are based on ISO-15924.25 A script is the set of characters used to
display a language. For example, English is written with the Latin script, and the ISO-
15924 code for Latin is "Latn".
Some language can be written in more than one script. For example, the Serbian language
can be written in the Latin or Cyrillic scripts, and Uzbek can be written with Cyrillic,
Latin or Arabic scripts.

Territories
The region codes are based on ISO-3166.26 These region codes include countries,
territories and some other places of interest around the world.

Currencies
The currency codes are based on ISO-4217.27 There are two things can be translated here.
One part is the display currency symbol (e.g. the $ for the US dollar), and the other part is

23 English (US): http://oss.software.ibm.com/cvs/icu/~checkout~/locale/diff/main/en_US.html
24 ISO-639: http://lcweb.loc.gov/standards/iso639-2/
25 ISO-15924: http://www.evertype.com/standards/iso15924/
26 ISO 3166: http://www.iso.org/iso/en/prods-services/iso3166ma/
27 http://www.bsi-global.com/Technical+Information/Publications/_Publications/tig90.xalter and
http://www.bsi-global.com/Portfolio+of+Products+and+Services/Books+Guides/Consumer/th42090.xalter

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 19 Washington, DC, April 2004

the display name (e.g. the "US Dollar" for $). The ISO-4217 code is used as the key for
these translations.

Time Zones
A time zone uses the Olson IDs, such as America/Los Angeles. These IDs provide not
only the information as to the offset from GMT (UTC), but also the daylight savings
information. Thus, for example, America/Phoenix is distinct from America/Denver
because they have different daylight savings time behavior. There are many cases where
there is no modern difference between two IDs; they are only distinguished in the past.
For example, America/Chicago and America/Indianapolis are currently the same, but
differed in the past. For the possible timezone IDs that can be translated, see Olson IDs28.
Most countries do not span multiple time zones, and may not have localized names for
particular time zones. In that case, probably the best localizations are something of a form
like "New York Time".
The fields are the long and short (abbreviated) versions of:
• generic time zone name, e.g. “Pacific Time”
• summer/daylight savings time, e.g. “Pacific Standard Time”
• standard time, e.g. “Pacific Daylight Time”

Numbers

Number Patterns
There are different formats for different types of numbers. For example, here are some
patterns (using the unlocalized symbols) with the corresponding text. While the format is
localized, the characters to specify the format pattern are not localized. That is, the
decimal point always is represented by the period (full stop) character, as in “3.14159”,
and the grouping separator (thousands, etc.) is always represented by a comma, as in
“1,000,000”.
The NumberElements resource affects how these patterns are interpreted in a localized
context. Here are some examples, based on the French locale. The "." shows where the
decimal point should go. The "," shows where the thousands separator should go. A "0"
indicates zero-padding: if the number is too short, a zero (in the locale's numeric set) will
go there. A "#" indicates no padding: if the number is too short, nothing goes there. A
"€" shows where the currency sign will go. The following illustrates the effects of
different patterns for the French locale, with the number "1234.567"

Pattern Text

#,###.## 1 234,57

#,###.### 1 234,567

28 Olson Data: http://oss.software.ibm.com/cvs/icu/~checkout~/locale/olson_ids.txt

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 20 Washington, DC, April 2004

####.##### 1234,567

####.0000# 1234,5670

00000.0000 01234,5670

##0,00 1 234,57

decimalFormats
The normal locale specific way to write a base 10 number.

currencyFormats
Use \u00A4 where the local currency symbol should be. Doubling the currency
symbol (\u00A4\u00A4) will output the international currency symbol (a 3-letter
code).

percentFormats
Pattern for use with percentage formatting

scientificFormats
Pattern for use with scientific (exponent) formatting.

Quoting rules
Single quotes, ('), enclose bits of the pattern that should be treated literally. Inside
a quoted string, two single quotes ('') are replaced with a single one ('). For
example: 'X '#' Q ' -> X 1939 Q (Literal strings underlined.)

Number Elements
Localized symbols used in number formatting and parsing.
decimal

- separates the integer and fractional part of the number.
group

- groups (for example) units of thousands: 10^6 = 1,000,000. The grouping
separator is commonly used for thousands, but in some countries for ten-
thousands. The interval is a constant number of digits between the grouping
characters, such as 100,000,000 or 1,0000,0000. If you supply a pattern with
multiple grouping characters, the interval between the last one and the end of the
integer is the one that is used. So "#,##,###,####" == "######,####" ==
"##,####,####".

list
- separates lists of numbers

percentSign
- symbol used to indicate a percentage (1/100th) amount. (If present, the value is
also multiplied by 100 before formatting. That way 1.23 => 123%)

nativeZeroDigit
- Symbol used to indicate a digit in the pattern, or zero if that place would

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 21 Washington, DC, April 2004

otherwise be empty. For example, with the digit of '0', the pattern "000" would
format "34" as "034", but the pattern "0" would format "34" as just "34". As well,
the digits 1-9 are expected to follow the code point of this specified 0 value.

patternDigit
- Symbol used to indicate any digit value, typically #. When that digit is zero, then
it is not shown.

minusSign
- Symbol used to denote negative value.

plusSign
- Symbol used to denote negative value.

exponential
- Symbol separating the mantissa and exponent values.

perMille
- symbol used to indicate a per-mille (1/1000th) amount. (If present, the value is
also multiplied by 1000 before formatting. That way 1.23 => 1230 [1/000])

infinity
- The infinity sign. Corresponds to the IEEE infinity bit pattern.

nan - Not a number
- The NaN sign. Corresponds to the IEEE NaN bit pattern.

currencySeparator
This is used as the decimal separator in currency formatting/parsing, instead of
the DecimalSeparator from the NumberElements list. This item is optional in the
CLDR.

currencyGroup
This is used as the grouping separator in currency formatting/parsing, instead of
the DecimalSeparator from the NumberElements list. This item is optional in the
CLDR.

Dates

Day & Month Names
All of the following should have the appropriate grammatical form for appearing in a date
format.
monthNames (Long Names)

These are the full month names, like "September".
monthAbbr (Short Names)

These are the abbreviated month names, like "Sep".
dayNames (Long Names)

These are the full Gregorian day names, like "Monday"
dayAbbr (Short Names)

These are the abbreviated day names, like "Mon"

Date & Time Options
firstDay

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 22 Washington, DC, April 2004

A number indicating which day of the week is considered the 'first' day, for
calendar purposes. Because the ordering of days may vary between calendar,
keywords are used for this value, such as sun, mon,... These values will be
replaced by the localized name when they are actually used.

minDays (Minimal Days in First Week)
Minimal days required in the first week of a month or year. For example, if the
first week is defined as one that contains at least one day, this value will be 1. If it
must contain a full seven days before it counts as the first week, then the value
would be 7.

weekendStart, weekendEnd
Indicates the day and time that the weekend starts or ends. As with firstDay,
keywords are used instead of numbers.

Date & Time Patterns
The following are characters used in patterns to show the appropriate formats for
a given locale. These characters are replaced with the appropriate values when a
date or time is being formatted.
Characters may be used multiple times. For example, if y is used for the year, 'yy'
might produce '99', whereas 'yyyy' produces '1999'. For most numerical
characters, the number of characters specifies the field width. For example, if h is
the hour, 'h' might produce '5', but 'hh' produces '05'. For some characters, the
count specifies whether an abbreviated or full form should be used.

Sym. Description
G Era - Replaced with the Era string for the current date.
y Year - Use two for the short year, or 4 for the full year

M Month - Use one or two for the numerical month, three for the abbreviation,
or four for the full name.

d Date - Day of the month. Use one or two for zero padding.
h Hour [1-12]. Use one or two for zero padding.
H Hour [0-23]. Use one or two for zero padding.
K Hour [0-11]. Use one or two for zero padding.
k Hour [1-24]. Use one or two for zero padding.
m Minute. Use one or two for zero padding.
s Second. Use one or two for zero padding.
S Millisecond - Use 1,2, or 3. shows the most significant digits.
a AM or PM
E Day of week - Use three for the short day, or four for the full name.
D Day of year - Use 1-3

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 23 Washington, DC, April 2004

F Day of Week in Month- use one.
w Week of Year. Use one or two for zero padding.
W Week of Month - use 1

z
Timezone. Use 3 for the short timezone (i.e. PST) or 4 for the full name
(Pacific Standard Time). If there's no name for the zone, it'll show up as
GMT+/-hh:mm.

A Year (of "Week of Year"). [May differ from Calendar year, see comments
under 'Week of Year', above.]

For more information, see the Java SimpleDateFormat documentation.29

localizedPatternChars
These are characters that can be used when displaying a date pattern to an end
user. This can occur, for example, when a spreadsheet allows users to specify date
patterns. Whatever is in the string is substituted one-for-one with the characters
"GyMdkHmsSEDFwWahKzYe", with the above meanings. Thus, for example, if
"J" is to be used instead of "Y" to mean Year, then the string would be:
"GyMdkHmsSEDFwWahKzJe".

Quoting rules
Single quotes, ('), enclose bits of the pattern that should be treated literally. Inside
a quoted string, two single quotes ('') are replaced with a single one ('). For
example: 'class of 'YYYY' at 'h' o''clock' -> class of 1939
at 6 o'clock (Literal strings underlined.)

AM / PM
Even for countries where the customary date format only has a 24 hour format, both the
am and pm localized strings must be present and must be distinct from one another. Note
that as long as the 24 hour format is used, these strings will normally never be used, but
for testing and unusual circumstances they must be present.

Eras
There are only two values for an era in a Gregorian calendar, "BC" and "AD". These
values can be translated into other languages, like "a.C." and and "d.C." for Spanish, but
there are no other eras in the Gregorian calendar. Other calendars have a different
numbers of eras. Care should be taken when translating the era names for a specific
calendar.

29 SimpleDateFormat: http://java.sun.com/j2se/1.4.1/docs/api/java/text/SimpleDateFormat.html

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 24 Washington, DC, April 2004

Week of Year
Values calculated for the Week of Year field range from 1 to 53. Week 1 for a year is the
first week of that year that contains at least the minimum days in a week days. Weeks
between week 1 of one year and week 1 of the following year are numbered sequentially
from 2 to 52 or 53 (if needed). For example, January 1, 1998 was a Thursday. If the first
day of the week is MONDAY and the minimum days in a week is 4 (these are the values
reflecting ISO 8601 and many national standards), then week 1 of 1998 starts on
December 29, 1997, and ends on January 4, 1998. However, if the first day of the week is
SUNDAY, then week 1 of 1998 starts on January 4, 1998, and ends on January 10, 1998.
The first three days of 1998 are then part of week 53 of 1997.
Values are similarly calculated for the Week of Month.

BIDI Ordering
In the comparison charts, the ordering of characters for BIDI languages is up to the
browser. The ordering may differ from the typical ordering in context, so may be helpful
to copy the text from the charts and paste into typical environments to ensure that the
ordering is correct. This is especially the case for date, time and number formats.
Note: If you ever need to convert text from hex format (\uXXXX) to real characters or
back, you can do the following:

1. go to the ICU Transform Demo - http://oss.software.ibm.com/icu/demo/

2. set Compound 1 to NFC, and Compound 2 to [:^ascii:] hex
3. paste what you want to convert into Input, and click Transform.
4. this will also give the NFC form of the text, which is preferred.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 25 Washington, DC, April 2004

Appendix C: Filing Locale Data Bug Reports
Locale data bugs and feature requests are filed at the Common Locale Repository
website.
However, before filing a bug report:

1. Review the Data Formats (Appendix B), so that you are familiar with the
format of the data in question.
• Even for items as simple as the months of the year, there are issues of

grammatical form that you should be acquainted with.
2. Consult the appropriate comparison chart (Appendix D).

• The purpose is to compare the data against that from other platforms.
3. Do not file bugs against platform data.

• That data simply represents what was gathered on the platform, and is not
under the control of this project.

• However, you can file bugs on the tools, if it appears that the platform
data is not being correctly gathered in XML or displayed as HTML in the
comparison charts.

4. If you have any questions, you can try the newgroups at
news://www.openi18n.org

In the bug report, include the following information:
• The specific locale.
• The date the comparison chart was generated (at the bottom of the chart).
• The line(s) of data that are incorrect.
• The justification for the change: mention a standard or other sources if there are

any.
• If one of the other data sources is correct, then that data source, otherwise the

corrected data to use.
• Wherever possible, include sample test data. This is especially important for

collation (sorting) rules!
Please group all bugs for a single locale into a single bug report, wherever possible.
Bugs may also be filed on the supplemental data30, which is only available in XML
format. Note that the default currency for a given country is in the supplemental data, not
in the locale data. Similarly, the timezones for different regions are to be derived from
Olson data31, and are not in the locale data. The localized names for currencies and
timezones, on the other hand, will be in the locale data (if available).
We have tried to make the format of the comparison charts as useful as possible. If you
have suggestions for improvements, please also file it as a bug report.

30 Supplemental Data: http://oss.software.ibm.com/cvs/icu/locale/common/xml/supplementalData.xml
31 Olson IDs: http://oss.software.ibm.com/cvs/icu/~checkout~/locale/olson_ids.txt

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 26 Washington, DC, April 2004

Collation Bugs
Please supply some short test cases that illustrate the correct sorting behavior as a list of
lines in sorted order. Try to include cases that show the boundary behavior by including
high suffixes, such as the following:
• Rules:

& c < cs
& cs <<< ccs / cs

• Test Data:
c
cy
cs
cscs
ccs
cscsy
ccsy
csy
d

Test out any suggested rules before filing a bug, using Locale Explorer:
1. Go to

 http://oss.software.ibm.com/cgi-bin/icu/lx/en/utf-8/?_=root&EXPLORE_CollationElements=

2. Pick the appropriate locale
3. Follow the instructions at the bottom to use your suggested rules on your

suggested test data.
4. Verify that the proper order results.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 27 Washington, DC, April 2004

Appendix D: CLDR Comparison Charts
The Common Locale Data Repository comparison charts provide comparisons between
locale data from different sources. The files are organized by locale. In each file, the first
three columns identify the data item, while the subsequent columns contain data. There
may be different numbers of columns per locale, based on the available comparison data.
The Common data is in the first data column, with other data sources following (where
available). The latter sources are generated with public APIs.

Field Formats
The format of many of the fields in the comparison chart will be clear from the Name and
ID, such as the months of the year. The format for others, such as the date or time
formats, is structured and requires more interpretation. If you have any questions about
the format, consult the overview in the Data Formats section, especially the notes on
Collation (Appendix B).

Bug Reports
For information on filing bug reports on the data, see Appendix C, Filing Bug Reports.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 28 Washington, DC, April 2004

 Columns
The links within the top header cells point to the XML data files, either for this locale or
for a related locale (the parent or root). Each column is marked with a color at the top.
The successive rows provide a comparison of the data, with the following color coding:

• Missing data is indicated by a white cell.
• Data that is the same as some column to the left uses the same color (with an

equals sign in the cell).
• Data that is identical except for a case change is indicated with a dagger (†).

Data that is different than any column to the left has the column's normal color.

Examples from different locales:

N. ParentNode Name ID COMMON
 (nl_NL, nl, root)

WINDOWS
(nl_NL)

SUNJDK
(nl_NL,
nl, root)

IBMJDK
(nl_NL, nl,

root)

SOLARIS
(nl_NL)

OPEN_OFFICE
(nl_NL)

AIX
(nl_NL)

LINUX
(nl_NL)

HP
(nl_NL

...
56 dayNames day sat zaterdag = = = = = = = =
...
5 dateFormat pattern full yyyy 'm.' MMMM d

'd.',EEEE
yyyy 'm.'
MMMM d
'd.'

EEEE,
yyyy,
MMMM
d

= yyyy
MMMM
dd
HH:mm:ss

yyyy m.
MMMM
dd d.

 =

...
120 territories territory ZA Suid-Afrika Suid Afrika South Africa ...
...
79 languages language be _________ _________† _________† ...
...
35 currency displayName EUR ___ ...
...
2 characters exemplarC [a-z _ _ _ _ _ _ _ _ _] ...
...
723 types type phonebook Telefonbuch-

Sortierregeln
...

Collation
The collation pages are separated off for easier viewing. There are only currently three
comparison columns for collation.
COMMON (xml UCA)LINUX (xml Base (en_US))WINDOWS (xml base (en))
The XML link points to the data file, while the base link points to the collation base. The
base for the Common collation rules is the UCA. For the other data sources, the base is
chosen to be an ordering for one of the locales sharing the same script. That permits the
rules to only contain differences.

The Common Locale Repository - Update

25th Internationalization and Unicode Conference 29 Washington, DC, April 2004

Appendix E: Locale Data Markup Language
Version 1.0 Errata
Since version 1.0 of the Locale Data Markup Language was released June 24th, 2003, a
number of corrections have been made. They are reflected in the examples and text
above, and are briefly summarized here:

• “currency=pre-euro” is no longer used as a currency type.
• In the <special … > keyword example, %icu should be %posix
• U+0000 should be used for escaping, instead of \u0000
• The document’s title should be Locale Data Markup Language, and not Locale

Data Interchange Format.
• The collation format changed slightly, and has a new element, <base>, which

contains an alias element that points to another data source that defines a base
collation. This allows collation rules to be more compact and maintainable,

For more details, please see the full errata page, via
http://oss.software.ibm.com/icu/locale/

